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Abstract Accurate neuron models at the level of the
single cell are composed of dendrites described by
a large number of compartments. The network-level
simulation of complex nervous systems requires highly
compact yet accurate single neuron models. We present
a systematic, numerically efficient and stable model
order reduction approach to reduce the complexity of
large dendrites by orders of magnitude. The resulting
reduced dendrite models match the impedances of the
full model within the frequency range of biological sig-
nals and reproduce the original action potential output
waveforms.

Keywords Passive dendrites · Quasi-active dendrites ·
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1 Introduction

Brain activities are controlled by large networks of neu-
rons which process information in the form of electrical
signals passed from one neuron to another via synaptic
connections. When coupled with experimental studies,
numerical simulation of large scale nervous systems
can provide profound understanding of brain func-
tions, offering insights that are practically or ethically
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impossible to acquire purely through experimental
means (Markram 2006; Izhikevich and Edelman 2007;
Djurfeldt et al. 2007).

A fundamental function of neuron cells is to trans-
form the incoming synaptic information into specific
patterns of action potential output. This process is
known as synaptic integration and is performed in
the extensively branched dendritic tree of the neuron
cell. Therefore, to understand information processing
in complex neuron networks, it is imperative to de-
velop simplified dendrite models, which captures the
input-output characteristics of the full models. In the
past thirty years, a lot of efforts have been devoted
to fulfilling this goal (Wilson and Bower 1989; Segev
1992; Rapp et al. 1992; Bush and Sejnowski 1993).
Most of such existing methods apply a set of rules
derived from the principles of cable theory (Rall 1959)
to collapse the full dendritic tree into a morpholog-
ically simpler canonical representation and map the
electrical and synaptic properties from the full tree onto
the simpler representation. While being successful in
preserving some characteristics of the full model, those
methods have some significant limitations. The model
simplification process adopted in the above approaches
is often very ad-hoc and lacks systematic error control.

Recently, a balanced truncation (BT) method
(Moore 1981) was proposed as a benchmark method
for quasi-active reduction (Kellems et al. 2009). Quasi-
active systems are obtained by linearizing a nonlinear
neuron at the resting potential. Those models are useful
for the study of subthreshold membrane potential and
the analysis of noise in dendritic information processing
(Koch 1999). The underlying computational machinery
of the proposed approach is model order reduction
(MOR) (Moore 1981; Glover 1984; Pillage and Rohrer
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1990; Feldmann and Freund 1995; Grimme et al. 2005;
Odabasioglu 1998; Bai and Su 2005; Antoulas 2005;
Yan et al. 2008), which computes a reduced order
model for a given higher-order linear time invariant
(LTI) system. As BT is very expensive, another method
based on H2 approximation, IRKA (Gugercin et al.
2008), was proposed for large-scale systems to miti-
gate the computational cost. While these methods have
shown good potentials in reducing dendrites and posses
favorable theoretical properties, they are often lim-
ited by high computational cost and complexity in
implementation.

Although the active properties of dendrites have
been widely studied, passive dendrite models are still
valuable under many cases. Interestingly, from a com-
putational point of view, compared with quasi-active
dendrite reduction, passive dendrite reduction is even
more challenging. While quasi-active dendrite is rep-
resented by a multi-input-single-output (MISO) LTI
system, passive dendrite should be represented by a
multi-input-multi-output (MIMO) LTI system. The ef-
ficiency of MOR techniques for LTI systems degrades
dramatically for MIMO systems with a large number
of inputs and outputs. In addition, it is important to
preserve passivity when reducing passive dendrite as
non-passive reduced model can produce non-physical
oscillation in simulation when interconnected with
other elements (like active conductances) to form a
larger network. Therefore, in spite of high compu-
tational cost, existing techniques proposed for quasi-
active dendrite reduction can not be applied for passive
dendrite reduction.

In this paper, we propose computationally efficient
Krylov subspace based MOR techniques (Feldmann
and Freund 1995; Grimme et al. 2005; Odabasioglu
1998; Bai and Su 2005; Yan et al. 2008). Those methods
are based on the concept of moment-matching and have
gained success for reduced order modeling of large-
scale RLC networks in the field of electrical engineer-
ing. Given a multi-compartment neuron model, we first
isolate active ion channels from the neuron cell and
then model the remaining passive dendrite as an N-
port linear circuit consisting of a large number of RC
compartments. Such N-port dendrite circuit is inter-
nally represented by a high-order impedance matrix,
which is considered as a canonical full model. The full
model is then reduced by a numerically efficient and
stable Krylov subspace based MOR technique, which
produces a much smaller impedance representation, or,
the reduced order model.

The reduced order model not only matches the
frequency-domain characteristics of the full model but
also preserves the passivity of the original model

(Odabasioglu 1998). As the spectrum of neuron activ-
ities is band limited and has a significant component
towards the low frequency end, the proposed method
is very efficient in terms of both computational cost
and the size of reduced model as only a small number
of moments are needed. In the case of integration of
a large number of synaptic inputs, we further develop
a scheme to exploit the inherent signal attenuation
in the dendrite tree to effectively reduce the number
of ports that need to be considered. This noticeably
reduces the complexity of MOR, and increases the
compactness of the reduced order model. In addition
to passive dendrites, the proposed method has also
been extended for reduction of quasi-active systems.
For quasi-active dendrite models, we recognize that
such systems can be effectively modeled as an MISO
system and exploit such property for efficient model
order reduction. In particular, we develop an output
Krylov subspace method that can compute highly com-
pact reduced models very efficiently. Our experimental
results have demonstrated that the proposed methods
are more accurate, less expensive and easier to imple-
ment than the existing methods.

2 Method

In Section 2.1, we use a simple example to illustrate
how a passive dendrite tree can be modeled at the input
and output ports using an N-port impedance. Then we
present Krylov subspace based model reduction tech-
niques to reduce the above N-port model in Section 2.2.
In Section 2.3, the proposed methods are extended
for the reduction of quasi-active dendrite. Section 2.4
gives the details of model parameters and simulations
protocols.

2.1 Equivalent N-port circuits for passive dendrites

As illustrated in Fig. 1, a realistic dendrite tree can
be modeled as a set of cylindrical membrane cables
(Rall 1959) and each cylinder can be divided into a
number of identical compartments of length l based on
the compartment approach (Rall 1964). If the length l is
sufficiently small, each compartment can be assumed to
be isopotential and the compartment approach results
in equivalent circuit models for the neurons, which
makes it possible to apply the well developed circuit
simulation techniques for neuron simulation.

In this section, we use a simple example to illustrate
how a given full dendrite tree can be modeled at the
input and output ports using an N-port impedance. As
shown in Fig. 2, without loss of generality, a neuron
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Fig. 1 Cable and compartment models for dendrites

consisting of four compartments is used in this illus-
trative example. The equivalent circuit is partitioned
into four portions, which are interconnected by three
ports. In circuit theory, a port is the location where
different portions of circuits are connected and each
port is described by the port voltage vp and current ip,
as shown in the figure.

2.1.1 Somatic voltage gated ion channel

In the illustrative example, the first compartment repre-
sents the soma, which is the place where action poten-
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Fig. 2 The equivalent circuit of a neuron consisting of four
compartments

tials are initiated. To model action potentials, voltage
gated ion channels are connected to the soma at the first
port (port 1). In this example, there are three types of
active ion channels described by the Hodgkin–Huxley
model (Hodgkin and Huxley 1952) and the voltage-
current relationship for the ion channels is given as
follows

ip1 = gNam3h(ENa − vp1) + gKn4(EK − vp1)

+ gL(EL − vp1) (1)

where vp1 is the port voltage, the port current ip1 is the
sum of three ionic currents, ENa, EK, EL are reversal
potentials, gNa, gK, gL are maximum conductance, and
m, n, h are gating variables describing the probability
that a channel is open and evolving as follows

ṁ = αm(vp1)(1 − m) − βm(vp1)m

ṅ = αn(vp1)(1 − n) − βn(vp1)n

ḣ = αh(vp1)(1 − h) − βh(vp1)h (2)

The above equations indicate that the voltage-current
relationship of voltage gated ion channels is nonlinear.

2.1.2 Synaptically activated ion channel

There is a synaptic input connected to the second com-
partment at the second port (port 2). The synaptic input
is modeled as a synaptically activated ion channel and
the voltage-current relationship is given as follows

ip2 = gsyn(t)(Esyn − vp2), (3)

where vp2 is the port voltage, ip2 is the port current,
Esyn is the reversal potential, and gsyn(t) is the time-
dependent conductance, which is often approximated
by an analytic alpha function (Rall 1967; Jack et al.
1975)

gsyn(t) = gmax
t − t0

tp
e(1−(t−t0)/tp)(t > t0) (4)

Given the arrival time t0 of a spike from a presynaptic
neuron, gsyn increases rapidly to a maximum conduc-
tance gmax at t = t0 + tp and decreases more slowly to
zero afterwards.

2.1.3 Electrode

There is an electrode connected to the last compart-
ment at the third port (port 3). The electrode is de-
scribed by an independent current source, which means
the port current ip3 is only a function of time t and
independent of the port voltage vp3

ip3 = f (t) (5)
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2.1.4 An equivalent multiport linear circuit model
for the passive dendrite

The previous three portions (voltage gated ion chan-
nels, synaptically activated ion channel, and electrode)
are all active. Isolating those active portions from the
neuron, the rest part of the neuron is the passive
dendrite, which is modeled as an equivalent multiport
linear circuit. The dendrite sub-circuit interfaces other
active portions of the neuron at the three ports men-
tioned before. To characterize the dendrite as a sub-
circuit of the overall neuron circuit, we derive the
voltage-current relations of this 3-port linear circuit at
the ports by relating the port currents (ip1, ip2, ip3) with
the port voltages (vp1, vp2, vp3).

As shown in Fig. 2, c1, c2, c3, c4 are membrane
capacitors, rm1, rm2, rm3, rm4 are membrane resistors,
ra12, ra23, ra34 are axial resistors, and v1, v2, v3, v4 are
membrane potentials. Note that, in the circuit models
in this paper, all voltages are expressed with respect
to a resting potential that is defined to be 0V. Given
the port currents ip1, ip2, ip3, it is easy to verify the
compartments 1–4 can be described by the follow-
ing equations correspondingly (c1 = c2 = c3 = c4 = c,
rm1 = rm2 = rm3 = rm4 = rm, ra12 = ra23 = ra34 = ra for
simplicity)

cv̇1 + v1

rm
+ v1 − v2

ra
= ip1

cv̇2 + v2

rm
+ v2 − v3

ra
= v1 − v2

ra
+ ip2

cv̇3 + v3

rm
+ v3 − v4

ra
= v2 − v3

ra

cv̇4 + v1

rm
= v3 − v4

ra
+ ip3 (6)

which can be written in a matrix form

⎡
⎢⎢⎣

c 0 0 0
0 c 0 0
0 0 c 0
0 0 0 c

⎤
⎥⎥⎦

⎡
⎢⎢⎣

v̇1

v̇2

v̇3

v̇4

⎤
⎥⎥⎦

= −
⎡
⎢⎣

1/rm+1/ra −1/ra 0 0
−1/ra 1/rm+2/ra −1/ra 0

0 −1/ra 1/rm+2/ra −1/ra
0 0 −1/ra 1/rm+1/ra

⎤
⎥⎦

×

⎡
⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 0
0 0 1

⎤
⎥⎥⎦

⎡
⎣

ip1

ip2

ip3

⎤
⎦ (7)

The port voltages vp1, vp2, and vp3 are the compartment
voltages v1, v2, and v4, respectively, which can be ob-
tained from the following equation

⎡
⎣

vp1

vp2

vp3

⎤
⎦ =

⎡
⎣

1 0 0 0
0 1 0 0
0 0 0 1

⎤
⎦

⎡
⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎦ (8)

As a result, the voltage-current relations of the
3-port linear circuit in the illustrative example are de-
scribed by Eqs. (7) and (8). Generally, the voltage-
current relations of a passive dendrite with n
compartments and N(N ≤ n) ports can be described by
the following matrix equations

Cv̇ = −Gv + Bip

vp = BTv (9)

which is the state-space model for the equivalent
N-port linear circuit. The vectors v ∈ R

n×1, ip ∈ R
N×1,

and vp ∈ R
N×1 denote the compartment voltages, port

currents, and port voltages, respectively

v =

⎡
⎢⎢⎢⎢⎣

v1

. . .

v j

. . .

vn

⎤
⎥⎥⎥⎥⎦

ip =

⎡
⎢⎢⎢⎢⎣

ip1

. . .

ipk

. . .

ipN

⎤
⎥⎥⎥⎥⎦

vp =

⎡
⎢⎢⎢⎢⎣

vp1

. . .

vpk

. . .

vpN

⎤
⎥⎥⎥⎥⎦

(10)

The matrices C ∈ R
n×n and G ∈ R

n×n represent the
capacitance and conductance matrices. Note that, both
C and G are symmetric. The matrix B ∈ R

n×N is the
incidence matrix and BT is the transpose of B. The
incidence matrix B maps the ports to the compartments
in the following way

B jk = 1 the kth port is in the jth compartment

B jk = 0 otherwise
(11)

where j = 1, 2, . . . , n and k = 1, 2, . . . , N.

2.2 Reduced order models of passive dendrites

The number of differential equations n is the order
of the state-space model (9). In Fig. 2, the order is 4.
However, for a realistic dendrite tree with thousands of
compartments, the order is high and so is the computa-
tional cost involved in analyzing such large dendrites in
the time-domain simulation.

As illustrated in Fig. 3, an efficient simulation
scheme to mitigate this problem is to preprocess the
large linear portion of the circuit (passive dendrite) into
a reduced order multiport model with similar voltage-
current relations (port behavior). Then the reduced



J Comput Neurosci

Passive dendrite

Synaptically activated 
channels

Electrodes

Voltage gated channels

Reduced
order
model

Synaptically activated 
channels

Voltage gated channels

Electrodes

Fig. 3 Preprocessing of linear portions of circuits (passive den-
drites) into N-port reduced models

model is used to simulate with other portions of the
circuit (voltage gated ion channels, synaptically acti-
vated ion channels, and electrodes), which are active
and could be nonlinear.

In this section, we introduce the concept of model
reduction and then apply Krylov subspace methods
to generate N-port reduced order models for passive
dendrites.

2.2.1 Model order reduction

By taking the Laplace transform of the state-space
model (9), the voltage-current relations of the N-port
linear circuit can be obtained in the complex frequency
domain

vp(s) = Z(s)ip(s) (12)

where Z(s) ∈ C
N×N is the Z-parameter matrix with

impedance parameters for the N-port circuit

Z(s) = BT(sC + G)−1B, (13)
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Fig. 4 The multiport representation of a linear circuit in the
complex frequency domain

which is the function of complex frequency variable
s ∈ C.

As shown in Fig. 4, Z(s) is a N × N matrix and each
element zij(s)(i, j = 1, 2, . . . , N) is a rational function of
order n in the complex frequency domain. If i = j, zii(s)
is the input impedance of port i; if i �= j, zij(s) is the
transfer impedance from port j to port i.

Given the state-space model (9), we want to produce
a much smaller q-th order model

C̃ ˙̃v = −G̃ṽ + B̃ip

ṽp = B̃T ṽ (14)

where C̃, G̃ ∈ R
q×q, and B̃ ∈ R

q×N .
Order q is much smaller than the original order n,

i.e. q � n, but the output vp and ṽp is approximately
equal for inputs ip of interest. In order to achieve this,
the Z-parameter matrix of reduced model

Z̃(s) = B̃T(sC̃ + G̃)−1B̃ (15)

has to be close to the Z-parameter matrix of original
model Z(s) (13) such that

‖Z(s) − Z̃(s)‖ < ε (16)

in some appropriate norm, for some given allowable
error and allowed domain of the complex frequency
variable s. Also, we want to make sure the reduced
model Z̃(s) is also passive.

2.2.2 Krylov subspace reduction method

Model reduction is an efficient technique to reduce the
internal complexity of a system while preserving the
port behaviors. Recently developed Krylov subspace
reduction methods have gained great success in the
application to large systems (Feldmann and Freund
1995; Grimme et al. 2005; Odabasioglu 1998; Bai and
Su 2005). Those methods are based on the moment
matching of Z-parameter matrix (13), which is a matrix-
valued rational function and can be expanded as Taylor
series at the origin (s = 0)

Z(s) = M0 + M1s + · · · + Mksk + . . . (17)

where Mk ∈ R
N×N is the kth moment of Taylor

expansion.
We want the reduced Z-parameter matrix Z̃(s) to

agree with the original Z-parameter matrix Z(s) up
to the first m derivatives (moments) at the expansion
point, the origin (s = 0)

M̃k = Mk(k = 0, 1. . . . , m − 1) (18)
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To illustrate the effects of moment matching, we use
zij(s), one entry of the matrix Z(s), as an example to
show its frequency response. The frequency response
is obtained by evaluating the magnitude of zij(s) at s =
jω. As shown in Fig. 5, the impedance of the reduced
and original models agree around expansion point ω =
0 and the impedance of reduced model will approach
the impedance of original model in a wider frequency
range as the reduced order increases.

Conceptually, it is not difficult to understand that
matching a few original moments in the reduced model
will well approximate the frequency domain character-
istics of the full impedance model around the expansion
point. In practice, it is often also true that moment
matching will preserve the original frequency domain
responses at frequencies that are far away from the
expansion point, as shown in Fig. 5. This salient feature
has made moment matching a popular choice for reduc-
ing LTI systems. It is possible to directly compute the
moments of the full model and match them in the re-
duced model (Pillage and Rohrer 1990). However, such
“direct” approach has been shown to be numerically in-
stable (Feldmann and Freund 1995). Much more robust
Krylov subspace projection based methods address this
difficulty by computing a subspace spanned by the
moment vectors (instead of moment vectors them-
selves) and projecting the full model onto this subspace
(Feldmann and Freund 1995; Grimme et al. 2005;
Odabasioglu 1998; Bai and Su 2005). Hence, these
methods are numerically stable moment-matching
based reduction techniques and the details are as
follows.

0 Frequency

Original

Reduced

Reduced
order
increases

Magnitude of impedance)( jω

ω

zij

Fig. 5 The moment matching of impedance parameter

The Krylov subspace Km(A, R) generated by a ma-
trix A and a matrix R, of order m, is the subspace
spanned by the set of vectors

Km(A, R) = span(R, AR, A2R, . . . , Am−1R). (19)

Given the state-space model (9), if we construct a
projection matrix V ∈ R

n×mN , whose columns span a
Krylov subspace Km(A, R)

span(V) = Km(A, R), (20)

where

A = G−1C ∈ R
n×nR = G−1B ∈ R

n×N, (21)

a reduced model of order q(q = mN) can be obtained
by projecting the original equations (9) in the column
space of V

C̃ = VTCVG̃ = VTGVB̃ = VTB. (22)

The production process is illustrated in Fig. 6. It has
been proved that the reduced model is passive and
matches the first m moments of the original model
(Odabasioglu 1998).

The projection matrix V can be obtained by a numer-
ically efficient Arnoldi method. The reduction process
is summarized in Algorithm 1. The steps 1–5 are similar
to the implementation in Odabasioglu (1998). The last
step of Algorithm 1 is to reduce the number of non-zero
elements of matrices C̃ and G̃. After projection, both
matrices are full(all elements are non-zero). To further
speed up simulation, we want to reduce the number of
nonzero elements. As both matrices are symmetric in
the state-space model (9), G̃ and C̃ can be simultane-
ously diagonalized by the following transformation

C̃d = WTC̃WG̃d = WTG̃WB̃d = WTB (23)

where C̃d, G̃d are diagonal matrices (off-diagonal en-
tries are all zero), and W ∈ R

q×q is an orthonormal
matrix whose columns are the generalized eigenvectors
of the matrix pair (−G̃, C̃) (Stewart 2001)

W = eigmatrix(−G̃, C̃) (24)

Note that, the Z-parameter matrix Z̃(s) is invariant
under the transformation (23).

As the matrices G, C, B are very sparse, the Krylov
subspace method is very efficient (Saad 2003). Given
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Fig. 6 Model order reduction
via projection
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the number of compartments n, the computational cost
of the reduction algorithm in Algorithm 1 is only dom-
inated by O(nr)(1 < r < 2), where r is dependent on
the sparsity of the matrices. The reduced models have
the same impedance parameters as the the full models
and can be automatically generated in a inexpensive
way. As a result, they could be used to replace the full
models to speed up network simulations.

2.2.3 Reduction for dendrites with a large number
of ports

Note that, given a system with N ports, to match the
first m moments, the dimension of the Krylov subspace
will be mN. In this case, the projection matrix V will
have mN columns and the order of reduced system will
be q = mN.

As shown in Algorithm 1, each port is consid-
ered equally in the classical Krylov subspace reduction
method. However, if the number of ports is large, the
size of reduced model has to be large, which limits the
efficiency of model reduction method. In this section,
we present an additional scheme to handle dendrites
with a large number of ports. Here ports are considered

differently in terms of their properties and relative
importance:

(1) Among all the ports, the somatic port is the
most important one. The voltage responses at
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soma represent the final results of information
processing via synaptic integration, which are to
be passed onto other neurons in the network.
In addition, due to the spiking action potentials,
somatic signals have more high frequency com-
ponents than dendritic signals. Therefore, more
moments should be matched at the somatic port.
In practice, it takes three to five moments for a
good approximation.

(2) On the contrary, the performances at other ports
are less important and the signals there also have
less high frequency components than the signals in
the soma. Usually, a good result can be obtained
by matching only one moment for each dendritic
port.

(3) In addition, as the cable theory predicts, the con-
tributions of inputs to the somatic membrane po-
tentials depend on their locations. In terms of the
somatic response, proximal inputs have relatively
larger effects than distal inputs, which are attenu-
ated more by the time they reach the action poten-
tial initiation zone. For example, given a model of
CA1 pyramidal neurons with passive dendrites, an
excitatory synapse of fixed synaptic conductance
is simulated at different dendrite locations and
the amplitude of the corresponding somatic post-
synaptic potential is shown in Box 2 in Spruston
(2008). As the distal inputs play insignificant roles
in the integration process, a good approximation
of somatic membrane potential can be obtained
even if the moments for distal locations are not
matched.

To evaluate the relative importance of each port
in terms of the somatic membrane potential quantita-
tively, we present a metric in terms of electrical dis-
tance. If the Z-parameter matrix Z(s) in Eq. (13) is
evaluated at s = 0, we get the resistance matrix R

R = Z(0) = BTG−1B =
⎡
⎣

r11 . . . r1p

. . . . . . . . .

rn1 . . . rnp

⎤
⎦ (25)

If a constant current of magnitude I is applied at the jth
port (I j = I), a constant voltage response of magnitude
rij I will be generated at the ith port (Vi = rij I). For
i = j, rij is the input resistance of the ith port. For i �= j,
rij is the transfer resistance from the jth port to the
ith port. For example, as shown in Fig. 7, there are
three ports and the first port is at the soma. Given
constant DC current inputs of the same amplitude I
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Fig. 7 A metric of synaptic inputs attenuation

(I1 = I2 = I3 = I), the somatic membrane potential V1

will be r11 I + r12 I + r23 I, which means the entries in the
first row of matrix R indicate the relative importance
of inputs at different locations in terms of somatic
membrane potential V1.

Generally, if the kth port is the somatic port, the rel-
ative influence of each port on the somatic membrane
potential is described by the kth row of the matrix R,
rk, which can be computed as follows

rk = bT
k G−1B = [

rk1 rk2 . . . rkN
]

(26)

where bk is the kth column of input matrix B cor-
responding to the kth port. Note that, the equivalent
circuits for passive dendrites are RC networks, which
behave like low-pass filters. As a result, high frequen-
cies components are attenuated much faster than low
frequency components, implying that the resistance
parameter is a conservative metric to determine the
relative importance of each port ( j = 1, . . . , N) in terms
of the somatic membrane potential. Similar ideas have
been successfully applied to reduce large-scale RC
networks with massive ports in the field of electrical
engineering (Yan et al. 2008).

Based on (1), (2), and (3), we propose a modified
Krylov subspace method for dendrites with a large
number of ports in Algorithm 2. In the modified algo-
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rithm, m moments are matched for the somatic port,
one moment is matched for each proximal port, and
no moments are matched for distal ports. The proximal
ports are identified by evaluating the resistance para-
meters rk given in Eq. (26). Note that, if the percent-
age of non-somatic ports included as proximal ports is
p(0 ≤ p ≤ 1), the order of the reduced model will be
m + �p(N − 1)�. As shown in Algorithm 2, Steps 1–4
generate a projection matrix V to match a number of
m moments for the somatic port. Steps 5 and 6 identify
a percentage of p non-somatic ports as proximal ports
based on the evaluation of Eq. (26). In Step 7, one
moment is computed for each proximal port and those
moments are included into the projection matrix V. The
combined projection matrix V is orthogonalized in Step
8 before projection.

It should be noted that although we have suggested
a practical way for choosing the number of moments
matched for each type of inputs, these values can be

adjusted properly to provide tradeoffs between model
accuracy, model size, and computational efficiency.

2.3 Model reduction for quasi-active systems

In this section, we first use a simple example to illus-
trate how a quasi-active dendrite can be represented
by a multi-input single-output LTI system. Then we
develop efficient Krylov subspace methods for quasi-
active dendrite reduction.

2.3.1 Quasi-active compartment models

In the subthreshold regime, the Hodgkin–Huxley sys-
tem can be linearized about the rest state, which pro-
duces a quasi-active model (Koch 1999; Kellems et al.
2009).

In this section, we use an illustrative example to de-
velop a quasi-active neuron model based on a compart-
ment model. As shown in Fig. 8, a neuron consisting of
three compartments is used as an illustrative example.
In this example, the first compartment represents soma,
and the second and third compartments represent the
active dendrite.

For simplicity, we assume each compartment only
has Na and K active channels, which are described by
the Hodgkin–Huxley model. Other active channels can
be included in a similar way. It is easy to verify that
the compartments can be described by the following
equations correspondingly

c1v̇1 + (v1 − v2)/r12 + iNa1 + iK1 + iL1 = isyn1

c2v̇2 + (v2 − v3)/r23 − (v1 − v2)/r12 + iNa2

+ iK2 + iL2 = isyn2

c3v̇3 − (v2 − v3)/r23 + iNa3 + iK3 + iL3 = isyn3

τm(v1)ṁ1 = m∞(v1) − m1

τm(v2)ṁ2 = m∞(v2) − m2

τm(v3)ṁ3 = m∞(v3) − m3

τh(v1)ḣ1 = h∞(v1) − h1

τh(v2)ḣ2 = h∞(v2) − h2

τh(v3)ḣ3 = h∞(v3) − h3

τn(v1)ṅ1 = n∞(v1) − n1

τn(v2)ṅ2 = n∞(v2) − n2

τn(v3)ṅ3 = n∞(v3) − n3, (27)
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Fig. 8 The equivalent circuit
of a neuron with active
dendrite consisting of three
compartments
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c3

where

iNak = gNakm3
khk(vk − ENa)

iKk = gKkn4
k(vk − EK)

iLk = gLk(vk − ELk)

isynk = gsynk(Esynk − vk) (28)

for k = 1, 2, 3.
Let v̄k, m̄k, h̄k, n̄k be the rest state potential and

gating variables. Given a small number ε, if gsynk =
ε g̃synk, the perturbed voltage and gating variables
vk, mk, hk, nk can be approximated by perturbation
analysis

vk = v̄k + εṽk + O(ε2)

mk = m̄k + εm̃k + O(ε2)

hk = h̄k + εh̃k + O(ε2)

nk = n̄k + εñk + O(ε2). (29)

Substituting Eq. (29) into Eq. (27), a linearized
model about the resting state is obtained by equating
the perturbation terms ṽk, m̃k, h̃k, ñk, g̃synk of order ε.
The linearized model is described by the following
equations

c1
˙̃v1 + (ṽ1 − ṽ2)/r12 + g1ṽ1 + im1m̃1 + in1ñ1 + ih1h̃1

= ĩsyn1

c2
˙̃v2 + (ṽ2 − ṽ3)/r23 − (ṽ1 − ṽ2)/r12 + g2ṽ2 + im2m̃2

+ in2ñ2 + ih2h̃2 = ĩsyn2

c3
˙̃v3 − (ṽ2 − ṽ3)/r23 + g3ṽ3 + im3m̃3 + in3ñ3 + ih3h̃3

= ĩsyn3

τm(v̄1) ˙̃m1 = ṁ∞(v̄1)ṽ1 − m̃1

τm(v̄2) ˙̃m2 = ṁ∞(v̄2)ṽ2 − m̃2

τm(v̄3) ˙̃m3 = ṁ∞(v̄3)ṽ3 − m̃3

τn(v̄1) ˙̃n1 = ṅ∞(v̄1)ṽ1 − ñ1

τn(v̄2) ˙̃n2 = ṅ∞(v̄2)ṽ2 − ñ2

τn(v̄3) ˙̃n3 = ṅ∞(v̄3)ṽ3 − ñ3

τh(v̄1)
˙̃h1 = ḣ∞(v̄1)ṽ1 − h̃1

τh(v̄2)
˙̃h2 = ḣ∞(v̄2)ṽ2 − h̃2

τh(v̄3)
˙̃h3 = ḣ∞(v̄3)ṽ3 − h̃3, (30)

where

gk =
(

gNakm̄3
kn̄k + gKkh̄4

k + gLk

)

imk = 3gNakm̄2
kn̄k(v̄k − ENa)

ink = gNakm̄3
k(v̄k − ENa)

ihk = 4gKkh̄3
k(v̄k − EK)

ĩsynk = (Esynk − v̄k)g̃synk (31)

for k = 1, 2, 3.
It is easy to verify, the above equations can be writ-

ten into the following block matrix form

⎡
⎢⎢⎣

C O O O
O Tm O O
O O Th O
O O O Tn

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎣

˙̃v
˙̃m
˙̃h
˙̃n

⎤
⎥⎥⎥⎦ = −

⎡
⎢⎢⎣

G Im Ih In

Ṁ∞ I O O
Ḣ∞ O I O
Ṅ∞ O O I

⎤
⎥⎥⎦

⎡
⎢⎢⎣

ṽ
m̃
h̃
ñ

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

B
O
O
O

⎤
⎥⎥⎦ ĩsyn, (32)



J Comput Neurosci

where

ṽ =
⎡
⎢⎣

ṽ1

ṽ2

ṽ3

⎤
⎥⎦ m̃ =

⎡
⎢⎣

m̃1

m̃2

m̃3

⎤
⎥⎦ h̃ =

⎡
⎢⎣

h̃1

h̃2

h̃3

⎤
⎥⎦

ñ =
⎡
⎢⎣

ñ1

ñ2

ñ3

⎤
⎥⎦ ĩsyn =

⎡
⎢⎣

(Esyn1 − v̄1)g̃syn1

(Esyn2 − v̄2)g̃syn2

(Esyn3 − v̄3)g̃syn3.

⎤
⎥⎦ . (33)

In the above matrix equations, O denotes a zero
matrix block, I denotes the identity matrix. Denote a
diagonal matrix whose diagonal entries are a1, . . . , an

by diag(a1, . . . , an), we have

C = diag(c1, c2, c3)

Tm = diag(τm(v̄1), τm(v̄2), τm(v̄3))

Th = diag(τh(v̄1), τh(v̄2), τh(v̄3))

Tn = diag(τn(v̄1), τn(v̄2), τn(v̄3))

Im = diag(im1, im2, im3)

Ih = diag(ih1, ih2, ih3)

In = diag(in1, in2, in3)

Ṁ∞ = diag(ṁ∞(v̄1), ṁ∞(v̄2), ṁ∞(v̄3))

Ḣ∞ = diag(ḣ∞(v̄1), ḣ∞(v̄2), ḣ∞(v̄3))

Ṅ∞ = diag(ṅ∞(v̄1), ṅ∞(v̄2), ṅ∞(v̄3))

B = diag(1, 1, 1)

G =
⎡
⎢⎣

g1 + 1/r12 −1/r12 0

−1/r12 g2 + 1/r12 + 1/23 −1/r23

0 −1/r23 g3 + 1/r23

⎤
⎥⎦ . (34)

In the quasi-active model, we are often interested in
the change of somatic potential under synaptic stimula-
tion. If the voltage potential at node k, ṽk(k ≤ 3), is the
somatic potential, it can be obtained by

ṽk = [
ek o o o

]
⎡
⎢⎢⎣

ṽ
m̃
h̃
ñ

⎤
⎥⎥⎦ = ekṽ, (35)

where ek is a row vector whose kth element is 1 and all
the other elements are 0, and o denotes zero row vector.

If we denote

x =

⎡
⎢⎢⎣

ṽ
m̃
h̃
ñ

⎤
⎥⎥⎦ , C =

⎡
⎢⎢⎣

C O O O
O Tm O O
O O Th O
O O O Tn

⎤
⎥⎥⎦ ,

G =

⎡
⎢⎢⎣

G Im Ih In

Ṁ∞ I O O
Ḣ∞ O I O
Ṅ∞ O O I

⎤
⎥⎥⎦ ,B =

⎡
⎢⎢⎣

B
O
O
O

⎤
⎥⎥⎦ , l = [

ek o o o
]
,

(36)

Eqs. (32) and (35) can be written into the following
state-space form

Cẋ = −Gx + Bĩsyn

ṽk = lTx. (37)

In the above example, there are three compartments,
three gating variables for each compartment, and three
synaptic inputs. However, it is easy to see the block for-
mulation (36) can be extended to more general cases.

Given a neuron model with n compartments, q gating
variables for each compartment, and p synaptic inputs,
the order of the state-space model (37) will be N =
(q + 1)n and the dimension of the matrices will be C ∈
R

N×N,G ∈ R
N×N,B ∈ R

N×p, l ∈ R
1×N .

2.3.2 Output Krylov subspace method

Different from the multi-input multi-output (MIMO)
system (9), which we deal with in Algorithms 1 and 2,
the quasi-active model (37) is multi-input single-output
(MISO). For MIMO systems, the efficiency of model
reduction will degrade as the number of ports increases.
However, for the MISO case, the problem can be
significantly simplified. Here, we propose an efficient
model reduction method based on output Krylov sub-
space projection.

Given the state-space representation (37), there
are two Krylov subspaces Km(G−1C,G−1B) and
Km(G−TCT ,G−T lT), which are called input and output
Krylov subspaces, respectively. It can be proved that
if projection matrix V is a basis of the input Krylov
subspace or output Krylov subspace, then the reduced
model will match first m moments (Villemagne and
Skelton 1987; Salimbahrami and Lohmann 2002).

Assume the quasi-active model has p inputs, in order
to match m moments, if the input Krylov subspace is
used, the reduced order will be pm, which could be
large if p is large. However, as the quasi-active model
has only one output, if the output Krylov subspace is
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used, the reduced order will be m, which is independent
of the number of inputs.

Therefore, in the proposed output Krylov subspace
method, a reduced model of order m can be obtained
by projecting the original equations (37) in the column
space of V

span(V) = Km(G−TCT ,G−T lT). (38)

The algorithm is given in Algorithm 3. Again, the pro-
jection matrix V is obtained by a numerically efficient
Arnoldi method. Note that, as the reduced model is al-
ways very small, there is no need to diagonalize reduced
matrices C̃ and G̃ here.

2.4 Model parameters and simulation protocols

To demonstrate the effectiveness of the proposed
methods, we use the passive dendrite of a layer V pyra-
midal neuron from the rat barrel cortex (Dyhrfjeld-
Johnsen et al. 2005) as an example. The morphology
is available online in the database of Neuron simulator
(NeuronDB). The passive dendrite consists of 2059
coupled cylindrical compartments with resistive and
capacitive elements. The resting potential is −0.07V
and the values of the passive parameters (specific mem-
brane resistance Rm, specific membrane capacitance
Cm, and axial resistivity Ri) are Cm = 0.007F/m2, Rm =
4�.m2, and Ri = 0.9�.m.

In the following section, we present the results
of simulations based on reduced passive and quasi-
active dendrite models, respectively. All the simula-
tions are performed with an Intel Duo Core CPU
with 3.17 GHz. The codes are written in Matlab 7.0
(http://dropzone.tamu.edu/∼byan).

2.4.1 Passive reduced model simulation

In Section 3.1, to assess the accuracy of the reduced
model for passive dendrite, we perform spectrum sim-
ulation under white noise inputs, somatic current injec-
tion, and synaptic integration, in Sections 3.1.1, 3.1.2,
and 3.1.3, respectively. The original passive dendrite
is described by 2059 differential equations and has an
order of 2059. 100 ports are considered and the reduced
passive dendrite has an order 54. The reduced dendrite
is generated by Algorithm 2 with m = 5 and p = 0.5.

For somatic current injection and synaptic integra-
tion, active conductances are placed at the soma to gen-
erate spiking trains of action potentials. The conduc-
tance follows Hodgkin–Huxley-like kinetics (Hodgkin
and Huxley 1952) with fast sodium Na and delayed
rectifier potassium K. The current-voltage relationship
of somatic ion channels are given in Eq. (1). For the fast
Na, the maximum conductance and reversal potential
are 4,800 S/m2 and 0.05 V. For the delayed rectifier
potassium, the maximum conductance and reversal po-
tential are 1,250 S/m2 and −0.09 V. The synaptic inputs
are modeled by a time-varying conductance g(t) in
series with a battery with reversal potential of 0 V. The
conductance is modeled by randomly generated trains
of alpha functions (Rall 1967; Jack et al. 1975) and each
alpha function has a peak amplitude of 1 nS and a time
to peak of 1 ms.

2.4.2 Quasi-active reduced model simulation

In Section 3.2, spectrum simulation under white noise
inputs, somatic current injection, and synaptic integra-
tion are performed in Sections 3.2.1, 3.2.2, and 3.2.3,
respectively. The quasi-active model is also generated
based on the morphology of the previous pyramidal
cell with 2,059 compartments. In this quasi-active exam-
ple, Na and K channels with Hodgkin–Huxley kinetics
are uniformly distributed in each compartment. After
linearization as described in Section 2.3, we obtain a
state-space model (37) of order 8236. In this example,
100 ports are considered and Algorithm 3 is applied to
generate a reduced model of order 5.

2.4.3 A simple network simulation

The simulations of passive reduced dendrites in
Section 3.1 are based on a single cell. To demonstrate
the network behavior of the reduced model, we use
pyramidal neurons as units to construct a network in
Section 3.3. The network is illustrative and very simple.
The aim of this simulation is not to provide a very
realistic neocortical model but to show that the reduced

http://dropzone.tamu.edu/~byan
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Fig. 9 A simple network
simulation
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model can preserve the output waveforms of all the
cells in a network level simulation.

Compared with the previous single cell simulation,
in this network example, we consider a much simpler
representation of the pyramidal cell. As shown in Fig. 9,
the dendrite tree is divided into five regions: distal
apical dendrite, middle apical dendrite, proximal apical
dendrite, soma, and basal. In each region, one port is
randomly selected.

There are ten pyramidal cells in the network. As
shown in Fig. 9, each pyramidal cell receives excitatory
synaptic inputs from other cells through one of the
ports and passes spikes to other cells through the axon.
In this example, we regard each axon as a simple delay
line for the propagation of spikes (Bower and Beeman
1998). In addition, those cells also receive synaptic
inputs modeled as randomly distributed trains of spikes,
which represent the random spontaneous “background
level” firing from many other neurons not being mod-
eled in the network.

3 Results

3.1 Passive reduced model simulation

3.1.1 Spectrum simulation under white noise inputs

As shown in Fig. 10, given the passive dendrite, we first
connect independent current sources at each port and

the randomly fluctuating input currents are modeled as
Gaussian white noise. The voltage response at Port 1
corresponds to the somatic potential.

The voltage responses generated by original and
reduced models are compared in Fig. 10. It is easy to
see the time domain responses are indistinguishable.
The corresponding power spectra are also shown in
Fig. 10. As the dendrite is modeled as an RC circuit,
which behaves as low-pass filters, the power spectrum
decays dramatically as the frequency increases. The fact
that power spectra of both models are indistinguishable
at lower frequencies implies the indistinguishable re-
sponses in the time domain.

3.1.2 Somatic current injection

Now we perform simulations under somatic negative
and positive current injections. As shown in Fig 11,
active conductances are placed at the soma (Port 1) to
generate spiking trains of action potentials.

Somatic negative current injection is a classical
method of identifying two important parameters of
a passive dendrite tree: somatic input resistance Rin

and time constant τm (Rall 1964; Bush and Sejnowski
1993). The responses of the reduced and full models
to a constant somatic current injection of −0.7 nA are
compared in Fig. 11(a). The overlapping of the two
curves shows that both models have the same Rin and τm.

In addition, we perform simulations to observe the
firing responses of the cell to a somatic positive current
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injection. The spiking responses of the reduced and full
models to a maintained 1.5 nA somatic current injec-
tion are given in Fig. 11(b), where the two responses
are indistinguishable.

3.1.3 Synaptic integration

A fundamental function of nerve cells is the synaptic
integration, which transforms the incoming synaptic
information into specific patterns of action potential
output. To demonstrate how accurately the reduced
model preserves the synaptic integration properties of
the full model, as illustrated in Fig. 12, we perform
simulations to compare the responses of both models
to the same synaptic inputs.

Figure 12(a) and (b) shows the responses of both
models to synchronous and asynchronous synaptic in-
puts from 100 different locations. It is easy to see
the neuron tends to fire more easily when receiving
synchronous synaptic inputs. In both cases, the reduced
model can reproduce exactly the same action poten-
tial waveforms of the full model. Another thing worth
mentioning is that, in addition to the somatic response
(Port 1), the reduced model also preserves the voltage
responses at other ports to a certain degree. For exam-
ple, the voltage responses at a dendrite location (Port 2)
are also given in Fig. 12(a). As shown in Fig. 12(a), the
signal at the dendritic location (Port 2) often has less
high frequency components than the signal at somatic
location (Port 1), which is one of the reasons we could
match less moments for dendritic inputs.

We quantify the performance of reduced models
in terms of speedup and accuracy as the number of
ports increases. Given the number of ports, Algorithm 2
(m = 5, p = 0.5) generates reduced models of different
orders automatically. In each case, the models are stim-
ulated by synchronous synaptic inputs as in Fig. 12(a).
From Table 1, we can see the speedup decreases from
25.27X to 3.35X as the number of ports increases from
1 to 100. The timing accuracy is measured by the
mean displacement of spikes defined by d = ∑K

i=1 tk/K,
where tk is the time of the kth spike and K is the
total number of spikes. If d and dr denote the mean
spike displacements for original and reduced models
respectively, the error is measured as |d − dr|.

In Table 1, most of the errors are less than 0.1 ms,
which means the reduced models can reproduce the
spiking trains of the original models very accurately.
Figure 12(a) corresponds to the case with 100 ports (last
row in Table 1). The reason why reduced models with
10 and 20 ports are less accurate (>0.1 ms) is that the
current configuration of p(0 ≤ p ≤ 1) in Algorithm 2 is
in favor of models with a large number of ports. The

Table 1 The performance of Algorithm 2 (m = 5, p = 0.5)

Number Reduced Runtime Timing error
of port order Original Reduced Speedup |d − dr|

(s) (s) (X) (ms)

1 5 12.13 0.48 25.27 0.0045
10 9 12.40 0.80 15.50 3.2045
20 14 12.67 1.13 11.31 0.1455
30 19 13.24 1.63 8.12 0.0318
40 24 13.80 2.08 6.63 0.0727
50 29 13.90 2.51 5.54 0.0409
60 34 13.95 2.91 4.79 0.0318
70 39 14.50 3.26 4.45 0.0091
80 44 14.54 3.70 3.93 0.0227
90 49 14.85 3.99 3.72 0.0091
100 54 15.23 4.55 3.35 0.0182

configuration p = 0.5 means only 50% non-somatic
ports are included in the projection matrix. This is to
ensure the compactness of the reduced models with a
large number of ports. In fact, for models with a small
number of ports, the accuracy can be simply improved
by choosing a larger p and this will be demonstrated
later in Table 2.

As the proposed methods do not take advantage of
topological information of the dendritic tree, the selec-
tion of port locations has little effect. To illustrate this
point, we perform experiments with 10 and 100 ports,
respectively. In both cases, five moments are matched
for the somatic port (m = 5). In the former case, all the
non-somatic ports are included in the projection matrix
(p = 1) and the reduced order is 14. In the latter case,
50% non-somatic ports are included in the projection
matrix (p = 0.5) and the reduced order is 54 (same as
Table 1).

For both cases, 20 simulations are performed. In
each simulation, the locations of the ports are randomly
distributed over the full dendritic tree. As shown in
Table 2, in both cases, the maximum timing errors
are less than 0.1 ms and the variance of performance
is small. This means the proposed methods are very
accurate and the selection of port locations has little
effect.

Table 2 The performance of Algorithm 2 with different selec-
tions of port locations

Number Reduced Timing error |d − dr|
of port order Min Max Mean Standard

(ms) (ms) (ms) deviation (ms)

10 14 0.0100 0.0838 0.0495 0.0266
100 54 0.0091 0.0636 0.0343 0.0125
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3.2 Quasi-active reduced model simulation

3.2.1 Spectrum simulation under white noise inputs

As shown in Fig. 13, given the quasi-active model, we
add independent current sources at each port and the
randomly fluctuating input synaptic currents are mod-
eled as Gaussian white noise. The voltage responses
at Port 1 corresponds to the somatic potential. The
voltage responses generated by original and reduced
models and the corresponding power spectra are com-
pared in Fig. 13. Similar to the passive dendrite case,
the quasi-active system also behaves as low-pass filters,
i.e., the power spectrum decays dramatically as the fre-
quency increases. As the power spectra of both models
are indistinguishable at lower frequencies, where the
most power is concentrated, the time domain responses
are indistinguishable.

3.2.2 Somatic current injection

Now we perform simulations under somatic negative
and positive current injections. As shown in Fig. 14, the
responses of the reduced and full models to a constant
somatic current injection of 0.1 nA and −0.1 nA are
compared in Fig. 14(a) and (b). In both cases, the two
responses are indistinguishable.

3.2.3 Synaptic integration

To demonstrate how accurately the reduced model
preserves the synaptic integration properties of the full
model, as illustrated in Fig. 15, we connect independent
current sources at each port. Note that, as the resting
potential V̄k is constant, the synaptic current input at
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the kth port, ĩsynk(t), is proportional to the change of
conductance g̃k(t)

ĩsynk(t) = (Ek − V̄k)g̃k(t), (39)

and g̃k(t) is modeled by randomly generated trains of
alpha functions with a peak amplitude of 1 nS and
a time to peak of 1 ms. We perform simulations to
compare the somatic subthreshold responses of both
models to the same synaptic inputs. Figure 15 shows
the responses of both models to synaptic inputs from
100 different locations. It is easy to see the reduced
model can reproduce the exactly the same waveforms
as subthreshold potentials.

We quantify the performance of reduced models
from Algorithm 3 in terms of speedup and accuracy.
First, we keep the number of ports a constant num-
ber, 100, and demonstrate the accuracy of the reduced
models in terms of the reduced order. We compare the
somatic subthreshold membrane potentials of the orig-
inal and reduced models at different reduced orders.
As there is no firing behavior, we use four different
measures to represent the errors: maximum absolute
error |v(tk) − vr(tk)|max, mean absolute error |v(tk) −
vr(tk)|mean, max relative error |(v(tk) − vr(tk))/v(tk)|max,
and mean relative error |(v(tk) − vr(tk))/v(tk)|mean. As
shown in Table 3, the errors generated by reduced
models are very small. Usually, a reduced order of 3
is good enough and there is no need to further increase
the order. The table also lists the reduction time, i.e.,
the extra time needed to build the reduced model.
As the reduced order increases, the reduction cost
increases slightly and the cost is very low.

Second, we keep the reduced order a constant num-
ber, 3, and demonstrate the performance of the reduced
models in terms of the number of inputs. As shown
in Table 4, with fixed reduced order, the accuracy and
reduction time do not change much. However, as the
number of inputs increases from 1 to 500, the speedup
decreases from 646.8 to 14.6. The reason is that while

Table 3 The performance of reduced models of different orders

Reduced Reduction Absolute error Relative error
order time (s) Max Mean Max Mean

(mv) (mv) (%) (%)

1 0.041 0.345 0.153 0.493 0.218
2 0.061 0.199 0.049 0.286 0.070
3 0.081 0.075 0.013 0.108 0.019
4 0.105 0.032 0.008 0.046 0.011
5 0.122 0.017 0.003 0.024 0.005

Table 4 The performance of reduced models with different num-
ber of inputs

Number Reduction Runtime Relative error
of inputs time (s) Original Reduced Speedup Max Mean

(s) (s) (X) (%) (%)

1 0.067 7.115 0.011 646.8 0.112 0.016
100 0.067 7.138 0.026 274.5 0.129 0.019
200 0.068 7.147 0.050 142.9 0.090 0.017
300 0.067 7.279 0.194 37.5 0.073 0.017
400 0.067 7.530 0.335 22.5 0.086 0.018
500 0.068 7.627 0.522 14.6 0.076 0.015

the B matrix in original system (37) is sparse, the matrix
in the reduced system is dense. For example, given a
number of 500 inputs, although the B in original system
has the dimension of 8,236 × 500, there are only 500
nonzero elements. In this case, even if the reduced
order is 3, the matrix in the reduced system is a 3 × 500
dense matrix and thus the number of nonzero elements
are 1,500.

3.3 A simple network simulation

The reduced models have an order of 9, which are ob-
tained by Algorithm 2 with m = 5 and p = 1 (matching
five moments of the original model at somatic port and
one moment at other ports). Given a longer period of
1 s, the network with reduced models runs about eight
times faster than the network with full models and can
produce almost the same action potential output wave-
forms of all the cells. Table 5 provides the performance
measure of each reduced neuron model in terms of both
correlation coefficient corr(v(t), vr(t)) and the number
of firings. If original and reduced models fires N and

Table 5 The performance of reduced models in the network
example

Neuron Correlation The number of firing
ID coefficient (%) Original Reduced Accuracy (%)

1 95.75 31 30 96.77
2 93.92 23 24 95.65
3 88.66 34 34 100.00
4 94.22 27 27 100.00
5 91.52 31 29 96.77
6 91.11 34 34 100.00
7 88.96 35 37 94.29
8 96.14 32 31 96.88
9 92.21 37 37 100.00
10 94.61 35 35 100.00
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Nr times, respectively, the accuracy measure in terms
of the number of firing is given by |1 − Nr/N|.

The waveforms of neurons 1–4 are given Fig. 16. For
neuron 1(a), the reduced model missed one firing at
about 0.4 s. For neuron 2(b), the reduced model fired an
additional one at about 0.3 s. For neuron 3(c), although
the accuracy in the table is 100%, the reduced model
actually missed one firing at about 0.35 s but fired an
additional one at about 0.25 s. For neuron 4(d), the
reduced model accurately tracks all the firings of the
original model. From Fig. 16, we can see, the detailed
timing information can be preserved very accurately as
well as the firing rate (in spite of occasional mistakes).
Note that, although 1 s is used here, similar results
can be observed even if simulation period is further
increased.

4 Discussion

4.1 Model reduction for neuron modelings

Model reduction is a technique to reduce the internal
complexity of a system while preserving the input-
output behavior. The technique is well developed and
extremely powerful for a class of linear time invariant
(LTI) systems. In this case, the simulation cost can be
significantly reduced and the input-output behavior of
system can be well preserved.

As shown in Fig. 17, the neuron model is a strong
nonlinear system due to the nonlinear behavior of ac-
tive channels. The inputs are reflected by synaptic con-
ductances g1(t), g2(t), . . . , gN(t) and the output is the
somatic voltage response v1(t). Although techniques of
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model order reduction (MOR) are well developed and
extremely powerful in the case of LTI systems, nonlin-
ear MOR techniques are much less developed in terms
of fidelity and efficiency. For example, for nonlinear
systems, a reduced model is usually built based on a
set of training input waveforms. Therefore, the reduced
model is often only reliable for the same or similar
inputs waveforms. Due to strong nonlinearity, a slightly
change in the input waveform might result in unex-
pected discrepancy in the simulation results. Building
a general and robust nonlinear reduced order model
can be rather challenging. In the work of Kellems et al.
(2010), nonlinear MOR was proposed to build reduced
model for neurons with active dendrites. This is a nice
work towards the right direction while many general
nonlinear MOR challenges remain to be researched on.

To make reduced models more efficient and reliable,
we isolate the active (nonlinear) and synaptic (time-
varying) conductances. The remaining passive dendrite
is an N-port network in the solid box. The N-port
network is a multi-input multi-output (MIMO) LTI
system. In this system, the inputs are port currents
i1(t), i2(t), . . . , iN(t) and the outputs are those port volt-
ages v1(t), v2(t), . . . , vN(t). Note that, although we are
only interested on the voltage at somatic port v1(t), we
still need to preserve the voltage responses at other
ports v2(t), . . . , vN(t) to a certain degree. The reason
is that the synaptic input currents are dependent on
corresponding port voltages. For example, at Port 2, we
have i2(t) = (E2 − v2(t))g2(t). If v2(t) is not preserved,
i2(t) in the next time step will be inaccurate, which will
result in errors in the somatic voltage v1(t) eventually.

That is a big difference between passive dendrite
reduction and quasi-active reduction. In the quasi-
active case, there is no such dependence. As shown

in Fig. 15, for quasi-active systems, we have ik(t) =
(Ek − V̄k(t))gk(t), where V̄k(t) is the constant rest-
ing potential. As a result, given the inputs currents
i1(t), i2(t), . . . , iN(t), we only need to preserve the so-
matic voltage v1(t) and it is essentially a multi-input
single output (MISO) system. Compared with MIMO
systems, much more compact models can be obtained
for MISO systems, which could be seen by comparing
the results in Tables 1 and 4.

Model reduction for MIMO systems is challenging if
the number of inputs and outputs are large (for the case
of integration of a large number of synaptic inputs).
This degradation is fundamental and does not depend
on any particular reduction method. For example, for
moment-matching methods, given the number of mo-
ments to be matched, the reduced order is proportional
to the number of ports. Similarly, for balanced trun-
cation methods, if the number of ports is larger, the
decay of Hankel singular values will be slower and a
larger reduced model is needed correspondingly. That
is the reason why we propose Algorithm 2 instead of
the classical Algorithm 1 to handle the case in Section
2.2.3. In Algorithm 2, only important port voltages are
selected to be preserved. For example, given 100 ports,
if Algorithm 1 is applied, it will result in a reduced
model of order 500. However, Algorithms 2 only results
in a reduced model of order 54, which gives excellent
approximations for the output of interest, as shown in
Fig. 12.

Second, we need to preserve passivity in the re-
duction. Under the context of linear system MOR,
one important issue is the preservation of passivity
in the reduced order model. A passivity-preserving
method produces a passive reduced model if the full
system is passive. This is a very desirable property as
non-passive models can produce non-physical oscilla-
tion when interconnected with other circuit elements
to form a larger network (Odabasioglu 1998). The
proposed method can preserve passivity by exploiting
the special structure of the state-space equations. The
MOR approaches in Feldmann and Freund (1995) and
Kellems et al. (2009) are not necessarily passive.

4.2 Impedance analysis of moment-matching

The reason why the reduced model by the proposed
method can produce almost the same output wave-
forms as the full model is that the reduced model has
the same impedance parameters as the full model in
the frequency range of biological signals. To illustrate
this point, we first show the impedances of reduced and
full models as functions of frequency. Then we show



J Comput Neurosci

10
0

10
1

10
2

10
3

10
4

180

200

220

240

260

280

300

320

340

360
(a)

Frequency (Hz)

M
a
g
n
i
t
u
d
e
 
r
e
s
p
o
n
s
e
 
(
d
B
)

 

 

Original

Reduced

0 200 400 600 800 1000
10

- 3

10
- 2

10
- 1

10
0

10
1

10
2

(b)

Frequency (Hz)

P
o
w
e
r
 
s
p
e
c
t
r
u
m

Fig. 18 The impedance of reduced and full models and the power spectrum density (PSD) of biological signal

the frequency components of the biological signals in
neurons.

The impedance parameters of the passive dendrite
are fully described by the Z-parameter matrix Z(s). The
frequency response of the impedance can be obtain
by evaluating Z(s) at s = jω = j2π f . Here, we use the
somatic input impedance as an example, which is one of
the entries of the matrix Z(s). As shown in Fig. 18(a),
the impedances of the reduced and full models are
indistinguishable at low frequencies due to moment
matching around expansion point 0 Hz (Eq. (18)).

Now we consider the frequency components of bio-
logical signals in neurons. We use the action potential
waveforms in Fig. 12(a) as an example. The power
spectrum density (PSD) is given in Fig. 18(b). It is clear
that the PSD is concentrated around 0 Hz and decays
dramatically as the frequency increases. The PSD is
about 1,000 times smaller as the frequency goes beyond
300 Hz and about 10,000 times smaller as the frequency
goes beyond 500 Hz.

Comparing Fig. 18(a) and (b), we see the reason why
the reduced model works very well: although the im-
pedances of reduced and full models are quite different
at high frequencies, the power of action potential sig-
nals is only concentrated at low frequencies and in
this frequency range, the reduced model has the same
impedance as the original model.

4.3 Comparison with existing techniques

Recently, a balanced truncation method (BT) (Moore
1981) has been proposed (Kellems et al. 2009) for
model reduction of quasi-active systems as a bench-

mark. To demonstrate the accuracy of the proposed
method, we compare it with BT. As BT is very expen-
sive in terms of both reduction time and memory, a
small example is used here. The quasi-active model of
the small example is obtained by distributing Na and
K channels with Hodgkin–Huxley kinetics uniformly
on the realistic morphology of a 252 compartment
dendrite of a Hormone cell (Roberts et al. 2010). The
morphology is also available online in the database of
Neuron simulator NeuronDB. After linearization, we
get a quasi-active model of order 1008. We randomly
choose 100 inputs and compare the accuracy of reduced
models of both methods at different reduced orders.

As shown in Table 6, while the errors of reduced
models are all very small, the proposed method is
superior to balanced truncation in terms of accuracy.
In addition, in this small example, while the reduction
time for Algorithm 3 is 0.036 s, the reduction time for
balanced truncation is 34.444 s, which is about 957 times
more expensive. In fact, the cost of balanced truncation
is O(n3), which is prohibitive for large examples.

Table 6 Comparison with balanced truncation

Reduced Max relative error Mean relative error
order BT Algorithm BT Algorithm

(%) 3 (%) (%) 3 (%)

1 0.585 0.202 0.484 0.190
2 0.328 0.072 0.265 0.068
3 0.160 0.038 0.126 0.021
4 0.051 0.016 0.048 0.013
5 0.047 0.012 0.011 0.002
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Although BT is a very power technique to generate
reduced models with wide band accuracy. The pro-
posed method usually gives better results given the
same reduced order. The reason is that the proposed
method is based on moment-matching (Taylor expan-
sion). Due to the fact that the spectrum of signal is
concentrated at lower frequencies, Taylor expansion
based method is preferred.

As BT is very expensive, a method based on H2

approximation, IRKA (Gugercin et al. 2008), was pro-
posed for large-scale systems to mitigate the compu-
tational cost. Although both Algorithm 3 and IRKA
use Krylov subspaces as a numerical technique, they
are based two different methodologies. The proposed
method is based on moment-matching. The goal of
IRKA is to minimize the L2 norm of the error in the
imaginary axis. Given the order of reduced model q, in
order to solve the optimization problem, IRKA needs
to interpolate the original system at the negative of q
poles of original model. As the poles are unknown a
priori, it makes an initial guess and uses Krylov sub-
space iteration to locate the poles until convergence.
The use of Krylov subspace in IRKA is similar to the
use of Krylov subspace iteration to find the eigenvalues
of matrices.

Although Krylov subspaces are used in both algo-
rithms, the proposed method is less expensive than
IRKA. The cost of both methods are dominated by
the number of matrix factorizations of the full system.
The proposed method only takes 1 matrix factorization
G−T . As for IRKA, if the reduced order is q, it takes 2q
matrix factorizations in each iteration

(G + σiC)−1,
(
GT + σiCT)−1

, i = 1, . . . , q. (40)

If it needs k times to converge, it will take 2qk matrix
factorizations. Moreover, the performance of IRKA
also depends on initial shift selection. Initialization
strategies often require the spectrum information of the
original system and thus add additional cost (Gugercin
et al. 2008).

4.4 Application of the proposed techniques

The proposed method can be used to replace high order
passive compartment models or quasi-active models
with much smaller reduced models to speed up the
analysis. The reduced models have very high fidelity
in terms of input-output behavior and can be obtained
efficiently. For quasi-active cases, some of the potential
applications have been well demonstrated in Kellems
et al. (2009).

Although the active properties of dendrites have
been widely discovered, passive dendrite models are
still valuable under many cases. For example, in Single
and Borst (1998), the role of dendritic morphology in
the process of visual motion detection was studied.
In this work, a passive dendritic multi-compartmental
model of a VS1 cell was reconstructed, which receives
synaptic inputs from an array of Reichardt-type motion
detectors (EMD). The model could reproduce the ex-
perimental results and theoretical predictions by show-
ing how local modulations at each EMD are smoothed
by integration in the dendritic tree to give a smoothed
high-fidelity global output signal at the axon. Different
from local dendritic signals, which indicate both direc-
tion and velocity of pattern motion, the output signal
at the axon is purely directional selective. In this ex-
ample, the proposed technique for passive reduction,

Fig. 19 Models with active
dendrite conductances
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Algorithm 2, can be used to replace the compartment
model to speedup the analysis. This is especially neces-
sary if the number of morphologies is large.

The proposed method could be useful to build large
network models for the study of temporal codes. Tem-
poral codes are based on precise timing of single
spikes. They might be locked to external stimulus or
intrinsically generated by the neural circuitry (Gerstner
et al. 1997). In recent years, increasing experimental
evidences have indicated that the firing rate concept
based on temporal averaging may be too simplistic to
describe brain activity (Stein et al. 2005). When precise
spike timing is found to carry information, the neural
code is often identified as a temporal code (Dayan
and Abbott 2001). A number of studies have shown
that the temporal resolution of the neural code is on
a millisecond time scale, which means precise spike
timing is a significant element in neural coding (Butts
et al. 2007).

Note that, in this paper, reduced models have been
obtained to match the exact somatic responses of the
original model. However, the degree of reduction de-
pends heavily on the fidelity required and the theoret-
ical question asked. In the situation where the exact
waveform is not needed, the reduced model can be
made more compact and runs faster.

4.4.1 Extension to modeling active dendrites

The proposed method can be applied to reduce active
dendrites. For example, as shown in Fig. 19, if Port 2 −
N have active conductances just as the Port 1 (somatic
port), we can still isolate the nonlinear parts and reduce
the remaining LTI system. There is no problem for us
to include a small number of compartments with active
conductances (just like soma). The limitation is that, if
the number of compartments with active conductances
is large, the amount of effective reduction is reduced.

Due to such limitations, for active cases, instead
of high fidelity single neuron modeling, the proposed
method is more suitable for generating highly sim-
plified models for network simulation. In this case,
given the passive dendritic compartment model, active
conductances can be distributed in a small number of
representative locations to reproduce the typical input-
output behaviors of the neuron. As the number of
such locations (Ports) could be small, a very compact
reduced passive dendrite could be obtained. The re-
duced dendrite, connected the active conductances, can
reproduce the responses of the original neuron exactly
with significant speedup.
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